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This paper describes a fast and simple computational procedure for a class of time- 
dependent radiation transport hydrodynamics problems with spherical symmetry. 
Local thermodynamic equilibrium is assumed, and effects of time-of-flight retardation 
of photons are not considered. A two-stream assumption is used wherein the mono- 
chromatic intensity function at each given point has one value for directions falling 
within a prescribed cone and another value for directions outside of that cone. A use of 
the method is illustrated in a computation of the growth of a nuclear fireball. 

This paper describes a computation method designed for time-dependent 
spherical problems of coupled radiation transport and hydrodynamics in media 
where the radiative absorption coefficients exhibit strong variations with tempera- 
ture. The method is based on the assumption that the resultant angular distribu- 
tions of monochromatic intensities are either (1) approximately isotropic, as in 
optically thick regions or optically thin regions bounded by optically thick regions 
or (2) can be approximated by two-valued step functions, as in a cool transparent 
region outside of an optically thick source. 

Local thermodynamic equilibrium is assumed, so that the material internal 
energy, pressure, and monochromatic absorption coefficients are expressible as 
functions of local temperature and density. Radiation energy densities and radia- 
tion pressures are not included in the equations of state, and photon time-of-flight 
effects are ignored. These omissions are justified when the time of transit of photons 
within the volume of physical interest is small compared to the e-folding time for 
exchange of energy between the matter and the radiation field. With these restric- 
tions the equation of radiative transfer can be written in the form 

3 = cos e 81, sin 0 a 
as ar - - = p'(& - I"), r &9 
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where I,, is the specific monochromatic intensity at frequency v in units of energy 
per unit area per steradian per unit frequency interval per unit time, 19 is the angle 
between the radius vector and the direction of the specified ray, r is the distance 
from the center of symmetry, p’ is the absorption coefficient corrected for stimulated 
emission, and B, is the Planck function. 

The rate of change of material energy per unit volume (omitting hydrodynamic 
effects for the present) is given by 

2 = 6 /.i (s,, I, dw - 4~rB”) dv, (2) 

where dw is the element of solid angle. 
For computing purposes, a quantity of more interest than I, itself is the mono- 

chromatic flux function, 

p, = 2rr IOn Z,(B) sin 0 cos 6 de. 

F, is the integral of the radial component of the intensity function over all solid 
angles. Equation (3) is appropriate only for systems with planar or spherical 
symmetry. The element of solid angle is 

dw = 2n sin 9 d8. 

In terms of the fluxes the rate of change of material energy per unit volume is 

m aE,lat = - 
f 

V -p, dv + hydrodynamic terms. (4) 
0 

This equation is equivalent to Eq. (2). 
It is convenient to replace the differential equation of radiative transfer [Eq. (I)] 

by the equivalent integral equation 

(5) 

where df and df’ are elements of distance along the ray connecting points PI and Pz . 



SPHERICAL RADIATION HYDRODYNAMICS 571 

With the inclusion of fluid motions, the coupled equations to be solved are 

apjat = -v * (pig, (cons. of mass) (6) 

a(pu,)/at = -v * (pu,v’) - V,P, (cons. of momentum) (7) 

and 

aE,,,/at = -V * (E,,$) - PV .a - lrn V * p, dv, (cons. of energy) (8) 
0 

together with the transport equation (5). The set is closed upon specification of the 
equation of state relations 

P = P(P, Em), T = TCP, &), (9) 

the radiative absorption coefficients 

$ = P’CF, Em > 4 (10) 

and definitions of the flux [Eq. (3)] and the Planck function. 
In Eqs. (6X10), quantities not previously defined are the mass density p, the 

pressure P, the temperature T, the velocity 6, and the orth component of velocity v, . 

FINITE DIFFERENCE APPROXIMATIONS 

A. Radiation Transport 

We shall represent the physical system by an array of J concentric volume 
elements (spherical shells) and assume that the density, temperature, and other 
intensive quantities are spatially uniform within each volume element. Then if two 
points PI and Pz are on the surface (or surfaces) of a volume element and the 
distance between the points is ds, the monochromatic intensity at P, along the 
direction of a ray from PI to Pz is 

Zy(Pz) = Z,(P,) e-“‘ds + B,(l - e-U’ds), (11) 

where p’ and B, are the values existing at the given instant in the given volume 
element. 

The radiation fluxes FV will be defined at the cell boundaries (shell surfaces). The 
flux at each boundary will be computed as the difference between an outward-going 
flux, 

F,,+ = 27~ s 
=/a 

Z,(e) sin 8 cos 8 de, 
0 

(12) 
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and an inward-going flux 

F,- = -2rr 
I 

v Iv(e) sin 0 cos 0 de. 
lr/z 

(13) 

Henceforth, until otherwise mentioned, we shall drop the subscript v, remem- 
bering that we will actually calculate the flux in each of a large number of frequency 
bands. 

Now, let RI and R, refer, respectively, to the inner and outer radii of a given 
cell, and let 0, and 8, be the values of 0 for a given ray measured at R, and R, , 
respectively. (Note that 0, and 8, are related via R, sin 6, = R, sin 8, .) Let 
I,&) and I,(&,) be the intensity of a given ray at locations R, and R, , and let 
As@,) be the distance between surfaces R, and R, measured along the path of the 
ray. Furthermore, let 

0, E arcsin(R,/R,), (14) 

the maximum value of t$, for rays that pass through the surface RI . Then according 
to Eqs. (1 I)-(13), the outward flux at Rz is 

Fz;z+ = 2~ I :” Il(el) e-p’AS(8J sin e2 cos 8, de, 

+ B [T sin2 0, - 2~7 jOem e-U’ds(ea) sin O2 cos 8, de,] 

+ 2rr joy 12(T - e,) P’AS(Q sin e, cos e2 de, 

t-B[ g ~0~2 8, - 2m 
I 

*I2 
e-u’As(es) sin 8, cos e2 de, . (15) 

%I I 

The first two terms arise from rays passing through both R, and R, , while the 
latter two terms account for those rays which pass through R2 in the inward 
direction and reemerge through R, without intersecting RI . 

The inward flux at R, is 

Fl- = A em 12(rr sm2 em s 
_ 0,) e-u'As(8a) sin e2 cos 8, de2 O 

+ TB [ 1 - & s @, e?’ As(ea) sin O2 cos 8, de2]. 06) m 0 

NOW for 0 G e2 < em 

h(e,) = ds,(ea = R, cos e, - (~~2 - ~~2 sin2 ep, (17) 



SPHERICAL RADIATION HYDRODYNAMICS 573 

and for et,, < 19~ < (42) 

ds(8,) = ds,(B,) = 2R:, cos 6, . (18) 

Next we assume that at each point in space the monochromatic intensity distribu- 
tion can be approximated by a two-valued step function. The intensity Z has either 
of two values Z, or la , respectively, depending on whether the ray direction, 
19, (0 < 0 < TT) is greater than or smaller than a specified value 8, . 8, is intended 
to represent the half-angle subtended at a given location by the principal radiating 
source. Thus, for example, at points exterior to a hot optically thick source, OS 
would be the half-angle subtended by the source; then the intensities would be 
large for angles 8 < 8, and very small for 8, < 0 < rr (see Fig. 1). The effective 

FIG. 1. Diagrams of the assumed geometry and the angular distribution of intensity. 
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source radius R, can be determined at each time step for each frequency group, 
and it is generally taken to be the radius at which the optical depth is unity. Then 
at a given mesh boundary with radius Ri , the value of 19, is 

0, = arcsin (R,/R<)y (19) 

provided that Ri > R, . Inside the source the intensity is assumed to be isotropic; 
accordingly, when Ri < R, , es is set equal either to ~12 or to 

&,, = arcsin (R,-JR,). (20) 

The above choice will be clarified in Eqs.,(21) and (22). 
With the asumption that the monochromatic intensities at each mesh boundary 

are isotropic within angles 0 < 8 < 8, (or within 8, or ST/~ in the event that 
Ri < R,) with one value I, , and again isotropic with a different value Zb for 
0, < 0 < 77, the entire array of fluxes can be generated in two passes (one inward 
and one outward) through the mesh. 

This assumed intensity distribution is exact in two kinds of limiting cases: 
(1) within an optically thick region of uniform temperature, where Z does not 
depend on 0 (and then Z, = Z,), and (2) in a vacuum outside of a uniformly 
emitting sphere, or in an evacuated spherical shell between uniformly emitting 
surfaces. 

Now consider a mesh cell bounded by surfaces of radii R, and R, , respectively. 
Assume that the effective source radius R, has been determined and define 

e = arcsinWR3 

I 

for R, > R,, 
IS 

42 for RI < R,, 
and 

e = arcsinWR2) 
1 

for RI > R,, 
2.9 em for R, < R,. 

(21) 

(22) 

Let the inward and outward flux components at surface R, be Fl- and Fl+, and 
let the corresponding fluxes at R, be Fz- and F,+. Then with the assumed Z vs 6 
relationships the four flux components are related by the coupled equations, 

Fl+ = 2rZl, Joe" sin 8~0s B de + 27Zl, 1:: sin BCOS 8 de (23) 

= rZl, sin2 e,, + nZI,,(l - sin2 e,,), 

Fa- = -277Z2, lm;, sin ~COS ede = rzzb, (24) 

Fs+ = mZ2, sin2 8,, + rZ2*(l - sin2 t&J, (25) 
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and 

Fl- = rrIlb , 

together with Eqs. (15) and (16). 
The integrals in Eqs. (15) and (16) are all either of the form 

I 
eB 

sin 8 cos 0 e-rr’Asl(e) de, 
0.4 

with As,(O) given by Eq. (17), or of the form 

CT” sin e cos e k~-u’~Q(~) dt?, 

with As,(e) given by Eq. (18). Both can be integrated in closed form. 
Let 

AR= R,- R,, r s $AR, 

u(e) = (4R)(R, cos 8 - (RI2 - R, sine Q112), 

uA = u(eA)9 2.b = ad, 

u, = u(e,,) = (T/AR)((R~~ - Ra2)l12 - (RI* - R8*)W), 

U, = u(e,J = m i- RNR, - RWa, 

G(u) = e-” (4 - 3 + j-m c dx, 
ZL x 

and 

H(u) = e-M(l + u). 

In terms of these functions, 

s @B 
sin e cos e cU’~Q@) de = 

e,4 
(R1 zR:i)’ T2 {G(uA) - G(uB)} 

575 

(26) 

(27) 

(28) 

(29) 

I 
9712 

hn 
sin 8 cos 8 e-U’As*(e) dB = (Rz - R1)2 (1 - fq2um)} 

4R22r2 
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Then the results of integrating Eqs. (15) and (16) can be expressed in the form 

Fz+ = 1~1,~ [ 
(4 + R,j2 72 

4Rz2 {G(T) - G(u.& - (R;iaT$)z W(T) - fWj] 

+ ?Tzlb [ 
(4 + Rd2 7' 

4R,2 {GO4 - 'Wd - (R;&$" VW - H(u,)}] 

(4 - W 
+ T'2b [ 2R,2,2 (1 - H(w1] 

+ ~TB [ 1 - (R1 lR:)’ T2 {G(T) - G&J} 

and 

Fl- = vrB + n&b - B)[(R1;R(BB)2 T2 {G(T) - G(um)) 

_ CR2 - RI)' 

2R12~= 
@f(T) - f&n)}]. 

(30) 

(31) 

Equations (23)-(26), (30), and (31) constitute a set of six coupled equations con- 
necting the flux components Fl+, F1-, F2+, and F,- and the intensities II, , &, , Z2a , 
and Izb . The six can be combined so as to eliminate the intensities. The combined 
equations are 

Fl- = rrB + (F2- - TB)[(~'~~~~)' T8 {G(T) - G(u,,J) 
1 

_ @a - Rd2 

2R12~’ 
{H(T) - H(um)$ (32) 

and 

F2+ = nB + (R1 iifT2 [(F2nT2-){G(~)- G(uJ} 
2 15 

+ (Fl- - ~B){G(d - WG] 
+ CR2 - RJ2 

2R22r2 [ (F2- - 7~B)(l - H(2u,)j 

_ Fl+ - Fl- 
( sin2 B,, )(H(T) - H&s)} -(PI- - ~JWWJ - H(%&]. (33) 
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Inside the source region-i.e., where R, < R, , we take 8,, = ~12 and 8,, = 8, 
[cf. Eqs. (21) and (22)]; then Eq. (33) reduces to the simpler form 

F2+ = ,TB + (Fl- - d) [(" zRf;)' T2 {G(T) - G(zG& 

_ @, - RI)" 
2R,V VW - m&] 

+ (Fs- - 7rB) ] (R;i2y2 ii1 - wh72)~. 

Equations (32) and (33) [or (34)] form the basis of the finite difference scheme. 
For each frequency group (subscript u) and for each mesh cell (subscript i) one 
needs to find the four quantities Fci," , Fg,, , F&,, , and F& . Equations (32) and 
(33) [or (34)], together with the flux continuity conditions 

and 

G+I., = &iv 3 (36) 

constitute the necessary set of four equations. Equation (32) gives the inward flux 
through the inner surface of a cell in terms of the inward flux through the outer 
surface and the properties of the medium in the cell. Thus, starting with a known 
inward flux through the outermost mesh boundary (generally zero), the complete 
array of inward fluxes can be generated with Eqs. (32) and (36). Equation (33) or 
(34) gives the outward flux at each boundary in terms of the outward flux through 
the previous boundary, the inward flux through both boundaries, and the proper- 
ties of the medium in between. Thus, given the array of inward fluxes already 
computed, and starting with Fl + = 0 at the center of symmetry, the complete array 
of outward fluxes can be generated. The process is repeated for each frequency 
group. 

From Eq. (4) the rate of change of energy per unit volume in the ith cell is 

WW)i = [ - (R23 1 RI3 Iom -X2(4+ - 4-j - R,2(4+ - F2-11 du] i 

+ hydrodynamic terms. (37) 

The integration over frequency is replaced in practice by a simple summation of 
contributions from each of a number of frequency groups. The hydrodynamic 
terms in Eq. (37) are computed separately (see Section B) and added linearly. 

Special provision must be made for situations where part of the system is 
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optically thick in one or more frequency groups. In computing the flux at a bound- 
ary between two optically thick cells, (i.e., thick at frequency v), application of 
Eqs. (32)-(36) would give 

Fi,, = n-(BiTl - I$+& . (38) 

This would be the correct expression for the boundary flux if the temperature 
profile did actually consist of a series of isothermal zones. If, however, the tem- 
perature profile were continuous, the flux would be represented better by the 
diffusion approximation 

F,, = -&rVB&‘. (39) 

The simplest finite difference representation of Eq. (39) for the flux at the ith 
boundary is 

F< = 8/3~(B,-; - Bi++)/(ri-+ + T& 

(subscript Y suppressed). 

(40) 

Equation (40) is used in place of Eqs. (32)-(36) whenever both 7i--i and ~~+a are 
greater than 2.0. 

When only one of a pair of adjacent cells is optically thick, no special action is 
necessary, as Eqs. (32)-(36) give a reasonable result. 

With the rates of change of specific internal energy due to radiation transport 
given by Eq. (37) (without the hydrodynamic terms), the computational time step 
is chosen so that the fractional energy change in a time step does not exceed a 
specified limitf(say 0.1) anywhere in the mesh. That is 

(41) 

When most of the energy transfer occurs in frequency groups which are not 
optically thick, it is found that a small value off can be used without making At 
inconveniently small. When this is the case no serious time-centering problems 
arise. The computer code based on this difference scheme (cf. next section) is in fact 
not time-centered. 

This method is not advantageous for problems that are dominated by radiation 
diffusion (as contrasted with radiation transport). With fluxes computed via Eq. (40) 
the time steps given by (41) tend to be inconveniently small. 

B. Hydrodynamics 

The radiation transport procedure is not restricted to a particular distribution of 
mesh cell thicknesses; therefore, it can be combined equally well with either an 
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Eulerian or Lagrangian hydrodynamics scheme. For the particular set of problems 
at hand an explicit Lagrangian method was used [l]. 

The hydrodynamic calculations are performed in parallel with the transport 
calculations, and either one or an integral number of hydrodynamic time steps are 
taken per radiation time step. 

The hydrodynamic equations (6)-(S), as specialized to a system with spherical 
symmetry, are represented in finite difference form as follows: Given a time in- 
crement At, equal to or shorter than the limiting increment allowed by Courant 
conditions, and given a set of values of mi (i = l,..., J), the masses of fluid in 
each of the J mesh cells, one updates the hydrodynamic quantities from time t to 
t + At, in three steps. 

In step I the pressure Pi and viscous pressure Qi are computed for each mesh 
cell. Pi is computed with the density pi and internal energy per unit mass Ii together 
with the given equation of state. Qi is set equal to zero in zones that are expanding. 
Otherwise it is given by the expression 

Qi = aPi A VJci At.&-, + Rf+,t}, (42) 

where AVi is the cell volume change occurring in the previous time step, ci is the 
local sound speed, and 01 is a constant of order 0.1-l. Indices i - 4 and i + 4 refer 
to the cell boundaries. 

In step II the acceleration ai++ of each boundary and the displacement of each 
boundary A&++ in time At, is computed. The internal energy per unit mass I* in 
each cell and the radius Ri++ and velocity vi++ of each boundary are updated to 
t + At, . The difference equations, to be applied in sequential order, are 

and 

at++ = 877Rf+,(Pi + Qg - f’t+~ - Qi+J<mi + mi+A (43) 

A&++ = AfdVi+f + ibi+? ASH), (44) 

Ii = li + h(Pi + Qi)(&+ AR,-+ - R& ARi++)/mi , (45) 

vi++ = vi++ + ai++ & , (46) 

R<++ = Ri++ + ARi+, e (47) 

The final cell volumes Vi and mass densities pi are computed in step III by the 
formulae 

Vi = +r(R;++, - R,“_+) (48) 

and 

pi = t?lJVi. (49) 
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The hydrodynamic time step is equal to the radiation time step from Eq. (41) 
divided by an integer. That is, 

At, = At/n, n = 1, 2,.... (50) 

The integer n is chosen so that At,, is equal to or smaller than the largest At allowed 
by the Courant conditions. At the end of each hydrodynamic time step the specific 
internal energies Ii are updated with the (aE/at)i computed via Eq. (37) at the 
beginning of the radiation time step At. That is 

Zi = Zi + AtH(aE/at),,&mi. (51) 

C. Limiting Cases and Accuracy of the Approximations 

Equations (32)-(36) have the necessary property that when T = 0, 

R12(FI+ - FI-) = R22(F2+ - F2-), 

so that V . F = 0. 
It is also necessary that if R, << R, and F2- = B = 0, then 

R,F,+ = R12FI+e-T. 

Equations (32) and (33) do in fact give this result. 
Another important limiting case is that of an optically thin cell with no fluxes 

incident on it. To first order in T, the radiation emitted by such a cell should be 

~T~R~~F$+ = 16/3.rr2rB(R12 + RlR2 + Rz2). 

Equations (32) and (34) do give this result. 
In the systems for which this method was developed, pLI is found to vary over ten 

powers of ten for the range of frequencies and temperatures of physical interest. 
That is, T is usually either much smaller than one or much greater. In both limits 
the present approximations are nearly exact. The computed flux distributions are 
sensitive to the assumed angular distribution of intensity only in those relatively 
rare cases where the local T values are close to one. 

Since the results are largely insensitive to the assumed angular distribution of 
Z(0), the method used for estimating the “source radius” R, is not critical. If the 
temperature decreases in the outward direction and the absorption coefficients are 
strongly increasing functions of temperature, then the central region will tend to be 
optically thick out to a certain radius and thin at larger radii, and the actual shape 
of the Z(e) vs 6 distribution will be close to a step function: The effective R, will be 
close to the radius at which the optical depth J,” p’dr is equal to I. On the other 
hand, if the absorption coefficients decrease strongly with increasing temperature, 
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the intensities will be close to isotropic (though with a wide range of magnitude) 
everywhere in the system. In such cases R, will be chosen as the outer boundary of 
the mesh. 

The present method, through its simplified treatment of the angular intensity 
distribution, permits relatively more attention to be devoted to spatial resolution 
and radiation spectral resolution. The trade-off is an advantageous one in terms of 
overall accuracy and requirements on computer time. 

The legitimacy of our neglect of radiation pressure and radiation energy density 
depends, of course, on the problem. This method was developed for a class of 
problems similar to that described in the next section-on the growth of a nuclear 
fireball in air at sea level. In sea level air the radiation energy is smaller than the 
material energy only at temperatures below 200 eV. Temperatures above 200 eV do 
occur within the first few tenth-microseconds, and our neglect of radiation energy 
makes the computation inaccurate for this period of time. The principal effect of 
the omission is to produce a timing error of order IO-’ sec. In air at lower densities 
the radiation energy would be important well below 200 eV if the radiation field 
reached local thermodynamic equilibrium; however, at low densities fireball 
dimensions tend to be smaller than relevant radiation mean free paths, and the 
radiation energy density does not reach L.T.E. Consistent with our neglect of 
radiation pressure, we have also neglected photon times-of-flight (retardation). 
This would not be justified if we were interested in effects occurring on time scales 
comparable with photon flight times and/or very early times when radiation pres- 
sure and energy density are important. Retardation is not important in fireballs at 
times later than 1 psec. 

Scattering of photons is also not considered, Thompson scattering begins to be 
an important physical effect at photon energies of 20 keV, and neglect of scattering 
makes the present treatment inaccurate at higher energies. For most fireball 
problems, however, the fraction of photons above 20 keV is very small. The neglect 
of molecular resonance scattering is probably more serious. MoIecular scattering 
does appear to have an observable effect on fireball profiles near “minimum time” 
(defined in the next section). 

COMPUTATION OF GROWTH OF A NUCLEAR FIREBALL 

The present computational scheme was developed for problems of nuclear 
fireball growth. It has been in use at Los Alamos and elsewhere since 1964 for 
problems of this sort. 

The physical problem, which has been described many times previously (see 
Refs. [2]-[7]), is as follows: Close to the bomb the air is heated initially to tempera- 
tures approaching 10’ K. This hot region then expands by radiation transport and 
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by hydrodynamics. The physical system includes regions with temperatures 
ranging from ambient to IO7 K and air densities between about 1O-5 and lo2 g/cm”. 
The radiation transport problem includes photons with energies between 10-l 
and IO5 eV. 

The computer code includes tables of equation of state data P and T vs p and E, 
tables of radiative absorption coefficients p’ vs p, E, and v, and tables of Planck 
function integrals J’,:f B,dv vs T and Y. (The frequency spectrum is discretized, the 
ith group being bounded by frequencies vii and uZi . Forty frequency groups are 
used.) The equation of state and absorption coefficient data are derived primarily 
from Refs. [8]-[I I]. Absorption coefficients (local Rosseland means) for normal 
density air at a few representative temperatures are plotted vs photon energy in 
Fig. 2. 

loo IO’ lo2 lo3 I04 03 

PHOTON ENERGY hv WI 

FIG. 2. Plots of radiative absorption coefficients of ambient density air vs photon energy at 
five different temperatures. 

Output of the code includes computer-generated profiles of visible radiance 
( W/cm2sr) vs radius across the fireball disc as well as radiant power (W/cm3 in 
several wave length bands. (These are generated in a separate subroutine which 
computes the angular distribution of visible radiation in detail.) The code also 
plots profiles of density and temperature vs radius from the burst point. 

The source (of mass M) is placed in the first Lagrangian zone and its temperature 
is held constant for a specified period of time 7% . The temperature T is so chosen 
that the sum of 1, the energy radiated from the surface area of the zone A at the 
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rate aT4 in the time T, , plus 2, the material energy in the mass M at temperature T, 
add up to the yield Y. 

Let us assume that Y = 1Mt (4.18 x 1O22 ergs). We shall assume also that 
M = IO6 g, A = lo5 cm2, T, = 1O-7 sec. Taking specific heat to be 2 x 108 erg/g “K, 
we then obtain a temperature T = 1.8 x IO7 K (1.6 keV). The peak of the black- 
body spectral distribution for this temperature occurs in the soft X-ray region at 
hv = 4.5 keV. In the computation the radiation is emitted from the zone in 
stepwise fashion with time steps limited by Eq. (41). 

The first X-rays are absorbed in cells close to the origin. The temperature in 
these innermost cells rises as a result to a value such that the air atoms are stripped 
of electrons, and their X-ray absorption coefficients drop sharply (see Fig. 2). Sub- 
sequent X-ray photons are transmitted by the inner cells and absorbed in cooler 
cells farther out. The latter are heated in turn until they, too, become transparent. 
The process continues until, at the end of the X-ray emission phase, the air tem- 
perature profile consists of a quasiisothermal sphere with a sharp boundary. 
Outside the isothermal sphere is a region of exponentially decreasing temperature 
created by the harder X-rays in the original Planck distribution. 

Optical absorption coefficients of air in the temperature range between 300 and 
20 000 K rise rapidly with increasing temperature (Fig. 2), and for the distance 
scales of the present problem, the air is effectively opaque at temperatures above 
8000 K. The region outside of the isothermal sphere has temperatures exceeding 
8000 K, so that it conceals the much hotter isothermal sphere. A set of temperature, 
density, and brightness plots for t = 10e6 set are in Fig. 3. The visual fireball 
radius at that time is the radius where the temperature is 8000 K. 

For about 1OOpsec the isothermal sphere grows by radiation transport. The 
radiation emitted in the interior consists predominantly of photons with energies 
between the air L and K absorption edges (vacuum ultraviolet). For temperatures 
between lo4 and lo6 K the air absorption coefficients in the vacuum UV decrease 
with increasing temperature owing to depopulation of the L shell. Photons emitted 
in the isothermal sphere have long mean free paths until they reach the surface 
where the air is cold. The process of emission within the isothermal sphere and 
absorption at the surface produces a rapid expansion of the region. The flat tem- 
perature profile is preserved while the average temperature drops. The velocity of 
the front decreases with the average temperature. The absorbing region outside of 
the isothermal sphere remains stationary, while the isothermal sphere grows 
through it. When the hot region passes across the 8000 K radius, the observable 
optical emission increases sharply. Temperature, density, and brightness profiles 
for t = 5 x 10m5 set are in Fig. 4. They show a strong shock driven by the 
expanding bomb vapor and a second, much weaker, shock at the front of the 
radiatively expanding fireball, 

As the fireball temperature drops, a condition is reached (T m 500 000 K) 
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FIG. 3. Profiles of temperature, density, and visible brightness for t = 1 x 10-6sec. 
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FIG. 4. Profiles of temperature, density, and visible brightness for t = 5 x 10-6sec. 

where the radiative expansion speed is no longer large compared to the sound 
speed. A strong shock wave forms and subsequent expansion of the fireball is 
dominated by hydrodynamics. Profiles for t = 3 x 1O-4 set in Fig. 5 show a fully 
developed fireball shock. The inner shock has largely disappeared. 
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As the expansion continues the shock strength decreases. Its surface brightness 
drops while its surface area increases. The net optical power output increases to a 
maximum at 1O-3 set and then decreases. Total observable optical power is plotted 
vs time in Fig. 6. 

The shocked air is opaque and conceals the hotter region inside, remnant of the 
isothermal sphere. As the shock temperature drops, however, its opacity decreases 
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FIG. 5. Profiles of temperature, density, and visible brightness for t = 3 x 1O-4 sec. 

FIG. 6. Computed optical power vs time. 

0 
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until, at 9 x 10” set, transmitted light from the isothermal sphere begins to 
predominate over light emitted by the shock itself. The net optical output at this 
point is a minimum. Further expansion produces further transparency of the shock, 
and the optical power increases (Fig. 6). Profiles of temperature, density, and 
brightness at 9 x 10m2 set are shown in Fig. 7. 
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FIG. 7. Profiles of temperature, density, and visible brightness for 1 = 9 x 10ea sec. 

The fireball continues to expand behind the increasingly transparent shock. Its 
intrinsic brightness decreases with time, but its surface area increases, producing, 
for a time, a steady increase in radiant power. The radiant power increases until 
transport within the fireball can no longer replenish the radiation losses from the 
surface. The system responds with the formation of a radiative “cooling wave,” 
whose effect is to lower the temperature at the fireball surface and reduce its 
capacity to radiate [3,6]. The process evolves as an inward-moving wave which 
drops the temperature to about 8000 K. The cooling wave arrests the accelerating 
radiation loss rate, which then passes over a maximum and drops off. Fireball 
profiles at the time of maximum (0.8 set) are shown in Fig. 8. Shortly after the 
maximum the fireball becomes transparent. 

Measured optical power vs time curves for sea level nuclear explosions have the 
characteristic shape of the computed curve in Fig. 6 [7]. The time of minimum 
power provides a measure of the yield. 

The assumption of a discontinuous two-valued intensity vs fI distribution (Fig. 1) 
is based on the observed fact that a fireball appears as a sharply defined disc of 
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fairly uniform brightness, as illustrated by the computed brightness profiles in 
Figs. 3-5,7, and 8. 

The early portion of the computed power vs time curve (Fig. 6) shows a series of 
bothersome oscillations. These arise from inadequate spatial resolution of the 
fireball temperature profiles, such that in the computational mesh there is an 
abrupt transition between optically thin cells (T < 1) and thick cells (T > 1). 
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FIG. 8. Profiles of temperature, density, and visible brightness for I = 0.8 sec. 

Owing to the rapid increase of optical absorption coefficients with increasing 
temperature, and the still more rapid increase of emission coefficients (JAB), the 
emitted radiation tends, for practical purposes, to be produced in the outermost 
thick cell and attenuated in the next few cells. The primary role of a cell in this 
transition region changes from one of absorption to one of emission within 
IO-100 time steps. The output power goes through one cycle of an oscillation in 
the same period of time. 

The oscillation problem could be solved in principle by the use of very thin mesh 
cells near the fireball front; however, attempts to implement this in practice have 
not been successful. Separate calculations [12] have shown that the radiance- 
determining layer in a high velocity shock front is of order 0.01 to 0.1 cm in thick- 
ness, and it has been impractical to use mesh cells of this size in fireball computa- 
tions. (The difficulty comes mainly from the fact that the computational time step 
is tied to the minimum cell size via the Courant condition.) 

The structures of shock fronts in the computations are determined artificially by 
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the viscous pressure Q [Eqs. (42)-(44)], and computed fireball radiance values are 
normally influenced by the shock structures. Errors are reduced by the device of 
setting the absorption coefficients in the artificial toe of a shock wave to the 
prevailing values ahead of the toe [13 1. The result is that absorption of radiation in 
the toe is eliminated, and computed shock brightnesses are close to blackbody 
radiance values for the computed shock temperatures. 

This computation, using 150 mesh cells and 40 frequency groups, required 
20 min of CDC 7600 machine time. 

COMPARISON WITH S, METHOD 

The computer code, known as RADFLO, embodies the present radiation 
transport scheme in the form of a subroutine. An alternative radiative transport 
subroutine using an S,, method has been constructed recently by Reed and 
Horak [14, 151. It is possible, therefore, to compare results of a normal RADFLO 
calculation and several S,-RADFLO calculations of the same problem with 
different values of n (i.e., different numbers of streams). 

The test problem chosen was similar to the problem just described. Comparison 
of the several sets of computed results for the test problem led to the following 
conclusions: 

(1) In the early phase of the problem, (t < lO-3 set) accuracy of the S, 
calculations improved with increasing n up to S, (8 streams). Further increase of n 
beyond 8 had no effect. After 1O-3 set all of the S, calculations (2 G IZ ,< 8) gave 
the same result. 

(2) During the X-ray deposition phase of the problem (t < lo-‘see) the 
standard RADFLO result was the same as the S, result. (During this phase the 
source radius R, in the RADFLO scheme is set equal to the radius of the central 
cell.) 

(3) During the radiative expansion phase (lo-’ < t < IO-* set) the S, 
fireball grows about 10 % faster than the RADFLO fireball. At the end of the 
radiative expansion phase the temperature gradient at the S, fireball surface is less 
steep, and the air shock develops somewhat more gradually. The S, result is 
probably the more accurate. 

(4) However, for t < 1O-3 set the S, and RADFLO radiant power vs time 
curves exhibit similar oscillations, due to the effects of inadequate spatial resolution 
and viscous pressure. Neither scheme gives physically valid results in this time 
interval. After 1O-3 set, differences between the S, , S, , S, , and RADFLO results 
disappear. 
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(5) An S, transport cycle involves about four times as many computer 
operations as a RADFLO cycle. 

POSSIBLE ASTROPHYSICAL APPLICATIONS 

The present computer code has possible applications in astrophysical fireball 
prob1ems-e.g. in supernova explosions. It is, however, limited in its ability to 
treat radiation transport in spectral lines, and it has no provision for treatment of 
scattering. The S, scheme is probably preferable for such problems [14]. 

SUMMARY 

The difference scheme described in this paper has the primary virtue of sim- 
plicity. The approximations used for the angular distribution of intensity are 
realistic for problems in which the optical absorption coefficients have a wide range 
of values within the physical system, and they are also accurate for systems which 
are optically thick or thin. 

Major inaccuracies arise from the groupwise averaging of absorption coeffi- 
cients, as well as from uncertainties in the coefficients themselves. Other errors 
arise from inadequate spatial resolution of the temperature profiles in expanding 
fronts. The simplicity and speed of the present radiation transport scheme permits 
the greatest amount of computational detail to be devoted to spectral and spatial 
resolution, where it is most needed. 
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